A NEW ALGORITHM FOR FINDING THE NILPOTENCY CLASS OF A FINITE p-GROUP DESCRIBING THE UPPER CENTRAL SERIES

نویسنده

  • MARIA A. AVIÑO-DIAZ
چکیده

In this paper we describe an algorithm for finding the nilpotency class, and the upper central series of the maximal normal p-subgroup ∆(G) of the automorphism group, Aut(G) of a bounded (or finite) abelian p-group G. This is the first part of two papers devoted to compute the nilpotency class of ∆(G) using formulas, and algorithms that work in almost all groups. Here, we prove that for p ≥ 3 the algorithm always runs. The algorithm describes a sequence of ideals of the Jacobson radical, J , and because ∆(G) = J +1, this sequence induces the upper central series in ∆(G).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2

Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.

متن کامل

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

On rational groups with Sylow 2-subgroups of nilpotency class at most 2

A finite group $G$ is called rational if all its irreducible complex characters are rational valued. In this paper we discuss about rational groups with Sylow 2-subgroups of nilpotency class at most 2 by imposing the solvability and nonsolvability assumption on $G$ and also via nilpotency and nonnilpotency assumption of $G$.

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007